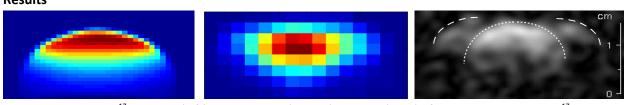
In-vivo T₁ and T₂* tissue-relaxation rates of H₂O¹⁷ at 16.4 Tesla

H. M. Wiesner¹, D. Z. Balla¹, R. Pohmann¹, W. Chen², K. Uğurbil², K. Uludağ¹

¹Max-Planck Institute for Biological Cybernetics, High-Field Magnetic Resonance Center, Tübingen, Germany ²Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA

Motivation


The measurement of cerebral metabolic rate of oxygen (CMRO₂) via direct NMR detection of the stable oxygen isotope O^{17} is a promising tool to study alterations in brain activity and pathology. Due to the low natural abundance of 0.037% H_2O^{17} , optimized acquisition parameters are crucial for O^{17} -weighted MRI of metabolically produced cerebral water. It has been suggested that signal-to-noise ratio increases almost quadratically with B_0 due to field-independent quadrupolar interactions of O^{17} [Zhu2001, Thelwall2003]. Thus, in comparison to studies at lower field strengths the increased magnetization available at 16.4 T allows an enhanced spatial resolution and thus for the first time a tissue-specific determination of O^{17} relaxation.

Methods

In-vitro & in-vivo images were acquired with (inversion recovery-)CSI or FLASH sequences on a 16.4 Tesla, \emptyset 26 cm bore (Magnex) magnet interfaced to a Bruker console with a one turn \emptyset 4 mm silver wire surface-coil (\emptyset 2 cm). All images were acquired with a Field-of-View of 3.5 x 3.5 x 2.5 cm³.

In-vitro: 20 g water-phantom with enriched 10% H_2O^{17} in a glass cylinder. All images were acquired with CSI. In-vivo: 2 self-breathing Isoflurane anesthetized male Wistar rats (500 g) were examined. Ventilation gases were continuously monitored and body temperature was maintained at 37 +/-0.3 °C with an electric heat blanket. Two types of images were sequentially acquired: 1. High-resolution CSI (Matrix 39x39x7) & 3D-FLASH (32x32x8) for anatomical identification of muscle, cortex and deep brain tissue. 2. CSI with a high number of signal averages for T_1 (inversion with block-pulses; 8 different inversion times (TI) 3-50 ms; Matrix 15x15x7) and T_2 *-relaxation (based on FIDs in image space; Matrix 17x17x7). Weighted-CSI sequence parameters for the T_1 -relaxation measurements: RF 50 μ s, phase-encode 424 μ s, TI 3-50 ms, TR 65 ms, spectral acquisition points 94, SW 9.4 kHz, total acquired FIDs 51200 (339 Averages); Parameters for T_2 *-relaxation: RF 50 μ s, phase-encode 424 μ s, TR 6.45 ms, spectral acquisition points 260, SW 52 kHz, total acquired FIDs 524488 (2158 Averages).

Results

In-vitro CSI 10% H₂O¹⁷ Phantom (left); In-vivo IR-CSI (middle) & FLASH (right) of natural abundance H₂O¹⁷ in the rat

T ₁ [ms]	in-vitro 6.93 +/- 0.34	in-vivo 6.53 +/- 0.15 (77 μl deep brain tissue)		
T ₂ * (ms)	in-vitro 2.24 +/- 0.09	1.39 +/- 0.14	1.83 +/- 0.20	2.08 +/- 0.23
		(75 μl muscle tissue)	(92 μl surface cortex)	(75 μl deep brain tissue)

It is shown that T_2^* values in different tissue types vary. All relaxation rates showed mono-exponential behavior.

Conclusions

Significant difference in T_2^* of muscle tissue in comparison to cortex tissue was determined, possibly resulting from lower diffusion of water molecules in muscles or from different biochemical environment. Low T_2^* relaxation rates of muscle tissue might be beneficial reducing partial-volume contaminations if read-out and TR is optimized for cortex H_2O^{17} . The T_1/T_2^* values determined can be used to tune parameters (e.g. Ernst angle, read-out duration, TR) to maximize SNR per unit time, as required in functional CMRO₂ measurements by short inhalations of O_2^{17} gas.

The study was funded by the Max Planck Society.

References: Thelwall et. al. Proceedings of the ISMRM 2003, Zhu et. al. Magnetic Resonance in Medicine 2001